
KEY DECODING

Application Engineering Department
LSI Division, Micom Sector

Application Note: KS88APN
September 1996

KEY DECODING

OVERVIEW

The routine described in this application note, “key_decoding,” determines the key ID (look-up table index value)
each time a key is pressed.

Table 3-1. Arguments and Register Allocations for “key_decoding”

Argument Addressing Description

keyinf Register (bit-wise) This one-bit flag indicates whether or not a key is
valid.

KeyValue Working register This working register is used to save the key index
value that is used to jump to the key service routine for
each input.

Buf Working register This working register is used to save the key index
code (00H –1FH) that is manipulated by key position.

r0, r1 Working registers r0,r1 These working registers are used to store the start
address of each key service handler.

r2, r3 Working registers r2,r3 These working registers are used to read out the start
address of the key service handler from the look-up
table "keydecidx".

Programming Guidelines

— The key_decoding routine is accessed by the main routine. The main routine has to call key_decoding before
key_scan can be executed.

— Because key_decoding determines key identification by manipulating oldkeyin and oldkeyout register values,
changing the oldkeyin and oldkeyout value can cause the main key decoding operation to execute. The
key_scan subroutine is always located in the key service program at an address before the start of the
key_decoding subroutine.

KEY DECODING APPLICATION NOTE: KS88APN3

3-2

Basic Operation

1. First, test if the flag ‘keyinf’ in the main routine is High level. If it is not High, return to the main routine.

2. Otherwise, clear the keyinf flag and calculate the start address of the key service handler, as follows:

a. Convert the key output data values FEH, FDH, FBH, F7H, EFH, DFH, BFH, and 7FH to the corresponding
indexed values — 0, 1, 2, 3, 4, 5, 6, and 7, respectively.

b. Add the indexed value by some weighted value that is obtained by key input data. The binary input data
values 0000 0110B, 0000 0101B, and 0000 0011B have the weighted values 0H, 08H, and 10H,
respectively.

c. The result of steps ‘a’ and ‘b’ becomes the key identification code (00H–1FH).

d. By manipulating the key ID code and the look-up table for the key service routine’s entry, read out the
start address of each key service routine:

— Because the start address of the key service routine has a 2-byte length, multiply the key ID code
by two.

— Add the start of address from the key decode look-up table.

— Read the key service address from the preceding action.

3. Jump to the appropriate key service routine.

APPLICATION NOTES: KS88APN3 KEY DECODING

3-3

RET

RET

RET

key_decoding00

keydeclop

keydec_ok

RET

key_decoding

keyinf = #1

keyinf ← #0
rKeyValue ← #0
rBuf ← oldkeyout

CF ← #0, rKeyValue <– – CF (rlc)
rr2 ← #keydecidx
r3 += rKeyValue
r2 += CF

rBuf + 0 ← @rr2, rr2++
rBuf + 1 ← @rr2, rr2++

key_service routine

jp @rrBuf

rKeyValue += #8

rKeyValue += #8

oldkeyin = #3

oldkeyin = #5

oldkeyin = #6

rBuf = #0FFH

CF = #1

CF ← “1”
CF – –> rBuf, (rrc)

rKeyValue ++

keydec_1

rKeyValue < #8

N
Y

Y
N

Y

N

N

Y

Y

N

Y Y

N

N

Figure 3-1. Program Flowchart for “key_decoding”

KEY DECODING APPLICATION NOTE: KS88APN3

3-4

SOURCE CODE FOR KEY DECODING ROUTINE

;===
;====== Key Decoding Routine ======
;===

; Register Definition Table:
Buf equ 0 ; r0
KeyValue equ 1 ; r1
TIMEFLAG equ 50H

; Constant Equation:
keyinf equ 02H

key_decoding:
tm TIMEFLAG,#keyinf ; Test if keyinf is on
jr nz,key_decoding00 ; Yes
ret ; If no, return to main procedure

key_decoding00:
xor TIMEFLAG,#keyinf ; Cear the keyinf flag
ld rBuf,oldkeyout ; If yes, determine the key ID code
ld rKeyValue,#0H ; Key strobe → rBuf

keydeclop:
scf ; 1111 1110 “0”
rrc rBuf ; 1111 1101 “1”
jr c,keydec_1 ; 1111 1011 "2"
cp rBuf,#0FFH ;
jr ne,keydeclop ; 0111 1111 "7"
ld rBuf,oldkeyin ; keyin data → r1
cp rBuf,#6H ; xxxx x110 + 0
jr eq,keystrb1 ; xxxx x101 + 8
cp rBuf,#5H ; xxxx x011 + 16
jr eq,keystrb2 ; where x = “0”, but has no meaning
ret ; Double key input or only one key output

keydec_1:
inc rKeyValue
cp rKeyValue,#8H
jr ult,keydeclop
ret ; Two or more keys are pressed simultaneously

keystrb3:
add rKeyValue,#8H

keystrb2:
add rKeyValue,#8H

keystrb1:

APPLICATION NOTES: KS88APN3 KEY DECODING

3-5

SOURCE CODE FOR KEY DECODING SUBROUTINE (Cont.)

keydec_ok:
; Keyvalue ← key ID code (0–23)

rcf cf
rlc rKeyValue ; Multiply by two because Jump address to key service

; routine has a 2-byte length
ldw rr2,#keydecidx ; Adjust the pointer of key function
add r3,rKeyValue
adc r2,#0H
ldci rBuf,@rr2 ; Read key function pointer from look-up table in ROM
ldci rBuf+1,@rr2
jp @rrBuf ; Jump to each function key subroutine

;===
;=== Key Function Service Routine Entry Table ===
;===

; Key jump address = Base address + Offset (index value)
; = keydecidx + key ID code

; Key service routine for each key ; Key ID code

keydecidx:
dw keyfnc0, keyfnc1, keyfnc2 ; 00, 01, 02
dw keyfnc3, keyfnc4, keyfnc5 ; 03, 04, 05
dw keyfnc6, keyfnc7, keyfnc8 ; 06, 07, 08
dw keyfnc9, keyfnc10, keyfnc11 ; 09, 0A, 0B
dw keyfnc12, keyfnc13, keyfnc14 ; 0C, 0D, 0E
dw keyfnc15, keyfnc16, keyfnc17 ; 0F, 10, 11
dw keyfnc18, keyfnc19, keyfnc20 ; 12, 13, 14
dw keyfnc21, keyfnc22, keyfnc23 ; 15, 16, 17

